Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size

نویسندگان

  • Zhichao Li
  • Chaoying He
چکیده

Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Over-Expression of LOC92912 Gene on Cell Cycle Progression

Background: We had previously identified the genes involved in squamous cell carcinoma of the head and neck using differential display and DNA microarray techniques. We also reported the first analytical study on a novel human gene called LOC92912, which was identified by differential display as a gene up-regulated in such carcinomas. LOC92912, which is a putative member of the E2 ubiquitin con...

متن کامل

PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-domain protein MPF2 from Physalis floridana.

MADS-domain proteins serve as regulators of plant development and often form dimers and higher order complexes to function. Heterotopic expression of MPF2, a MADS-box gene, in reproductive tissues is a key component in the evolution of the inflated calyx syndrome in Physalis, but RNAi studies demonstrate that MPF2 has also acquired a role in male fertility in Physalis floridana. Using the yeast...

متن کامل

Deciphering the Physalis floridana double-layered-lantern1 mutant provides insights into functional divergence of the GLOBOSA duplicates within the Solanaceae.

Physalis spp. develop the "Chinese lantern" trait, also known as inflated calyx syndrome, that is a morphological novelty. Here, we identified the double-layered-lantern1 (doll1) mutant, a recessive and monofactorial mutation, in Physalis floridana; its corolla and androecium were transformed into the calyx and gynoecium, respectively. Two GLOBOSA-like MADS-box paralogous genes PFGLO1 and PFGLO...

متن کامل

Cell cycle and apoptosis: A review

Cancer is characterized by abnormally excessive cell proliferation. Cell proliferation, the process by which a cell grows and divides to produce two daughter cells. Each of these daughter cells divides to produce two new cells, steps that are called cell cycle. Meanwhile, apoptosis is a highly regulated process of cell death, which is involved not only in the development of shape and morphogene...

متن کامل

Hormonal control of the inflated calyx syndrome, a morphological novelty, in Physalis.

The 'Chinese lantern' phenotype or inflated calyx syndrome (ICS)--inflated sepals encapsulating the mature berry of Physalis floridana--is a morphological novelty within the Solanaceae. ICS is associated with heterotopic expression of MPF2, which codes for a MADS-box transcription factor otherwise involved in leaf formation and male fertility. In accordance with this finding, the MPF2 promoter ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2015